Computing isolated orbifolds in weighted flag varieties
نویسنده
چکیده
Given a weighted flag variety wΣ(μ, u) corresponding to chosen fixed parameters μ and u, we present an algorithm to compute lists of all possible projectively Gorenstein n-folds, having canonical weight k and isolated orbifold points, appearing as weighted complete intersections in wΣ(μ, u) or some projective cone(s) over wΣ(μ, u). We apply our algorithm to compute lists of interesting classes of polarized 3-folds with isolated orbifold points in the codimension 8 weighted G2 variety. We also show the existence of some families of log-terminal Q-Fano 3-folds in codimension 8 by explicitly constructing them as quasilinear sections of a weighted G2-variety.
منابع مشابه
Orbifold Cohomology of Torus Quotients
We introduce the inertial cohomology ring NH T (Y) of a stably almost complex manifold carrying an action of a torus T . We show that in the case that Y has a locally free action by T , the inertial cohomology ring is isomorphic to the Chen-Ruan orbifold cohomology ring H∗CR(Y/T ) (as defined in [Chen-Ruan]) of the quotient orbifold Y/T . For Y a compact Hamiltonian T -space, we extend to orbif...
متن کاملRestriction Varieties and Geometric Branching Rules
This paper develops a new method for studying the cohomology of orthogonal flag varieties. Restriction varieties are subvarieties of orthogonal flag varieties defined by rank conditions with respect to (not necessarily isotropic) flags. They interpolate between Schubert varieties in orthogonal flag varieties and the restrictions of general Schubert varieties in ordinary flag varieties. We give ...
متن کاملThe Quantum Cohomology of Flag Varieties and the Periodicity of the Schubert Structure Constants
We give conditions on a curve class that guarantee the vanishing of the structure constants of the small quantum cohomology of partial flag varieties F (k1, . . . , kr; n) for that class. We show that many of the structure constants of the quantum cohomology of flag varieties can be computed from the image of the evaluation morphism. In fact, we show that a certain class of these structure cons...
متن کاملSemifree Symplectic Circle Actions on 4-orbifolds
A theorem of Tolman and Weitsman states that all symplectic semifree circle actions with isolated fixed points on compact symplectic manifolds must be Hamiltonian and have the same equivariant cohomology and Chern classes of (CP 1)n equipped with the standard diagonal circle action. In this paper, we show that the situation is much different when we consider compact symplectic orbifolds. Focusi...
متن کاملHamiltonian Torus Actions on Symplectic Orbifolds and Toric Varieties
In the first part of the paper, we build a foundation for further work on Hamiltonian actions on symplectic orbifolds. Most importantly we prove the orbifold versions of the abelian connectedness and convexity theorems. In the second half, we prove that compact symplectic orbifolds with completely integrable torus actions are classified by convex simple rational polytopes with a positive intege...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Comput.
دوره 79 شماره
صفحات -
تاریخ انتشار 2017